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Stability of a viscous liquid film flowing down a periodic surface
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Abstract

The paper is devoted to a theoretical analysis of linear stability of the viscous liquid film flowing down a wavy surface.
The study is based on the Navier–Stokes equations in their full statement. The developed numerical algorithm allows us to
obtain pioneer results in the stability of the film flow down a corrugated surface without asymptotic approximations in a
wide range over Reynolds and Kapitsa’s numbers. It is shown that in the case of moderate Reynolds numbers there is a
region of the corrugation parameters (amplitude and period) where all disturbances decay in time and the wall corrugation
demonstrates a stabilizing effect. At the same time, there exist corrugation parameters at which the steady-state solution is
unstable with respect to perturbations of the same period as the period of corrugation. In this case the waveless solution
cannot be observed in reality and the wall corrugation demonstrates a destabilizing effect.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Theoretical studies of film flows began with the classical work of Nusselt (1916) where he obtained exact
solutions for the Navier–Stokes equations for a thin viscous layer falling down a smooth vertical wall. A great
number of works have been devoted to both linear and non-linear analysis of wave formation on a free surface
of the flow and there are many reviews devoted to wavy films. The problem of non-linear waves in the film
falling down a smooth surface has much in common with that of a viscous layer flow along a corrugated sur-
face. In both cases the governing equations are significantly nonlinear, the free surface is unknown, the surface
tension forces play a great role and there exists a spatial period. In spite of numerous applications of the prob-
lem to distillation processes (Fair and Bravo, 1990; DeSantos et al., 1991) and compact heat exchangers (Shah
and Focke, 1988; Webb, 1994) there are few experimental (Zhao and Cerro, 1992; Negny et al., 2001a,b; Vla-
chogiannis and Bontozoglou, 2002) and theoretical studies of the film flows down a corrugated surface. Using
perturbation theory, Wang (1981) investigated the flow along a sinusoidal surface with a corrugation ampli-
tude that was small compared to the Nusselt’s thickness. Kang and Chen (1995) generalized this approach on
0301-9322/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijmultiphaseflow.2007.05.004

* Tel.: +7 383 330 60 40; fax: +7 383 330 84 80.
E-mail address: trifonov@itp.nsc.ru

mailto:trifonov@itp.nsc.ru


Yu.Ya. Trifonov / International Journal of Multiphase Flow 33 (2007) 1186–1204 1187
two-layers flowing down an inclined, slightly wavy surfaces. Using boundary-integral computational analysis,
Pozrikidis (1988) considered a creeping flow over an inclined periodic surface when the interia forces were
ignored. Shetty and Cerro (1993) developed asymptotic analysis of flow when the film thickness is much smal-
ler than the amplitude of corrugation. Treating corrugation in a linear approximation, Bontozoglou and
Papapolymerou (1997) examined resonant effects at finite Reynolds numbers. Numerical solution of
Navier–Stokes equations was obtained by Trifonov (1998) at finite values of Reynolds number for the corru-
gation amplitude that is comparable with the Nusselt film thickness. Film flow over a wavy wall in cylindrical
geometry was investigated numerically by Negny et al. (2001a,b) on base of the Navier–Stokes equations.
Their investigations were restricted by thin films in compare with the corrugations parameters. Film flow
down a three-dimensional corrugated surface (with both large ribs and small surface texture) was studied
by Trifonov (2004) on base of the integral approach.

All theoretical works mentioned above dealt with a waveless film flow down a corrugated surface. It is well-
known that there are waves on the surface of film flowing down a smooth surface. What are the waves in the
case of film flow down a corrugated surface? This question was studied by Trifonov (2007) on base of integral
approach and two-periodical nonlinear regimes of flowing were obtained. Using a perturbation analysis the
linear stability of film flow over an inclined wavy surface was considered by Wierschem and Aksel (2003)
and Wierschem et al. (2005). Their analysis was devoted to the long undulations when the liquid free surface
follows the corrugations shape. The goal of the present work is to study stability of the film flow down a cor-
rugated surface in frame of Navier–Stokes equations. We need to obtain parameters where the integral or
asymptotic approaches are still valid to describe more complicated regimes of flow down a corrugated surface.
There are very few works where the film flow with a wavy free surface is considered by use of the Navier–
Stokes equations in their full statement. One of them was carried out by Chin et al. (1986) where they inves-
tigated linear stability of the Nusselt film flow over a smooth surface at large values of Reynolds number
ðRe > 100Þ.

2. Governing equations

Using a rectangular coordinate system the flow of viscous incompressible liquid along a vertical corrugated
surface is described by Navier–Stokes equations with the corresponding boundary conditions (see, for exam-
ple, Trifonov, 1998):
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Here u is the velocity component in the x-direction, v is the velocity in the y-direction, P is the pressure in the
liquid, Pa is the atmospheric pressure, f ðxÞ is the wall surface shape, hðx; tÞ is the instantaneous film free sur-
face shape, Hðx; tÞ ¼ hðx; tÞ � ð1=e1Þf ðxÞ is the instantaneous local film thickness.

The equations are written in a non-dimensional form using scales as follows (dimensional variables are
denoted by asterisk):
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Here m is the kinematic viscosity; q is the liquid density; r is the surface tension; A and L are the corrugations
amplitude and period, respectively; Re is the Reynolds number; Fi is the film number.

The free surface shape is unknown beforehand. We use coordinates transformation t1 ¼ t, x1 ¼ x,
g ¼ ðy � f ðxÞ=e1Þ=Hðx; tÞ and the flow area becomes known: x1 2 ½0; 1�, g 2 ½0; 1�. Using new variables the
non-stationary equations can be written as follows (the low index ‘1’ is omitted):
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Let us explain that the Eq. (3) follows from the continuity equation in new variables

ov=ogþ oðHuÞ=oxþ oðHgxuÞ=og ¼ 0 after the integration from 0 to g and taking into account the no-slip con-
ditions at the wall. Eq. (4) follows from the kinematic boundary condition and Eq. (3) at g = 1.

We are interesting in the steady-state solutions of Eqs. (1)–(7) ðH bðxÞ; ubðx; gÞ; vbðx; gÞ; P bðx; gÞÞ and in their
stability. In the case of flow over a smooth wall ðA ¼ 0Þ there is the analytical solution (Nusselts’s solution):
H 0
bðxÞ ¼ 1; u0

bðx; gÞ ¼ 1:5ð2g� g2Þ; v0
bðx; gÞ ¼ 0; P 0

bðx; gÞ ¼ P a: ð8Þ

Numerical methods should be involved to get the steady-state solutions at finite values of the corrugation
amplitude. There are four independent parameters in the Eqs. (1)–(7) e; e1; Fi;Re and a function describing

the wall configuration f ðxÞ. We will use L=
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, A/L, Re and Ka (Ka � Fi1=11 is the Kapitsa number) as

the independent parameters and f ðxÞ ¼ 0:5ð1� cosð2pxÞÞ for the calculations below. It is easy to see that
the equations parameters can be expressed through our independent parameters – e ¼ ð3ReÞ1=3
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Eqs. (1)–(7) were computed numerically by use of the spectral method to obtain the steady-state solutions:
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Here T mðg1Þ are Chebyshev polinomials and the ‘star’ superscript designates complex conjugation.
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numerical algorithm starts with the specification of the initial approximation for harmonics U n
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improved by Newton’s method from Eq. (1) transformed into ðn;mÞ-space. The Jacoby matrix was calculated
by use of the first order differential scheme. Taking into account the boundary conditions (5) and (7) we have
(M + 2)(N � 1) nonlinear algebraic equations to obtain MðN � 1Þ unknown values, i.e. the system is overde-
fined. This problem is related to the fact that the basis functions in spectral expansion do not satisfy boundary
conditions. In the current paper, we discard 2(N � 1) equations corresponding to the last two Chebyshev coef-
ficients in the expansion of the Eq. (1). The results will be correct at a good enough accuracy of approximation
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calculations, the indicated conditions of approximation were provided by the corresponding increasing of
numbers N and M from 8 to 256 and from 5 to 50, respectively, depending on the parameters.
3. Stability of the steady-state solutions
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into the system (1)–(7) and linearizing the resultant equations near the steady-state solution, we obtain a sys-
tem of equations with periodic coefficients to find a spectrum of eigenvalues:
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ûdg0 þ v̂ ¼ 0; ð13Þ

a6
1ðx; gÞ bH þ a6

2ðx; gÞ
d bH
dx
þ a6

3ðx; gÞ
d2 bH
dx2
þ
Z 1

g
a6

4ðx; g0Þûþ a6
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Here C.C. designates value that is complex conjugate to the disturbance and the bar denotes value calculated
at substitution of the steady-state solution. Coefficients ai

j, bi
j in Eqs. (9)–(14) are real functions and ones are

expressed through the steady-state solution (see Appendix).
According to Floquet’s theorem, the solutions of Eqs. (9)–(14) bounded in terms of the x-coordinate are

presented as follows:
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û

v̂bP

0BBBB@
1CCCCA ¼

Pn¼N=2�1

n¼�N=2þ1

bH n expð2pinxÞ

1
2

Pn¼N=2�1

n¼�N=2þ1

û1n expð2pinxÞ þ
PM
m¼2

T m�1ðg1Þ
Pn¼N=2�1

n¼�N=2þ1
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Here Q is a real parameter varying from zero to unity Q 2 ½0; 1�. After substitution into Eqs. (9)–(14) we have a
generalized eigenvalue problem for complex matrixes:
Ax̂ ¼ kBx̂; x̂ ¼

bH n

ûmn

v̂mnbP mn

0BBB@
1CCCA: ð15Þ
Matrixes A and B are of order ð3M þ 1ÞðN � 1Þ and ones were computed numerically column by column
varying unit vector of the disturbances. We discard 2(N � 1) equations corresponding to the last two
Chebyshev coefficients in the expansion of Eq. (10). Instead of them the boundary conditions (11) and
(12) are used. To study stability of the solution ðH bðxÞ; ubðx; gÞ; vbðx; gÞ; P bðx; gÞÞ we have to analyze
ð3M þ 1ÞðN � 1Þ eigenvalues for each value of the parameter Q 2 ½0; 1�. The solution is stable if the real
parts of all eigenvalues are greater than zero or equal to zero for all Q. Disturbances with Q = 0 should
be distinguished. These disturbances have the same period as the basic solution. Instability with respect
to this class of disturbances manifests itself in the fact that the steady-state viscous flow is impossible to
observe in reality. Regimes unstable with respect to disturbances with finite values of Q can be observed
until the disturbances will be developed.
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4. Results of the calculations. Stability of the film flows down a smooth surface

Steady-state solution (8) was examined firstly regarding the stability and results are presented in Figs. 1 and
2 (here aneut � 2pH 0=k

�
neut, k�neut is the dimensional period of neutral disturbance). The calculations were per-

formed for three values of the Kapitza number Ka ¼ Fi1=11. First of them (Ka = 10) is close to the water film
number or to the film number of liquid nitrogen on the saturation line at atmospheric pressure. Second and
third values of Fi correspond to water-glycerol mixtures used by Alekseenko et al. (1992) in experiments on
wavy film flow. Parameter L in this case has no physical meaning (only a scale) and in the equations we
can use L ¼ H 0 ðe ¼ 1; 1=e1 ¼ 0Þ and k� ¼ H 0=Q is the disturbance dimensional period. Problem (15) in this
case is simplified because the coefficients aj

i in Eqs. (9)–(14) do not depend on the x-coordinate. At all values of
the Reynolds number Re (at least up to 1000) and at Q < QneutðRe; Fi1=11Þ spectrum of the eigenvalues of (15)
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Fig. 1. Wave numbers of the neutral disturbances. Lines 1–3 correspond to the Navier–Stokes equations calculations at Fi1/11 = 10, 5 and
2, respectively. Result of Benjamin (1957) asymptotic approach is aneut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5We=18

p
¼ 1 at all values of Re and Fi1=11.

1E-2 0.1 1 1E+1 1E+2

1.5

2.0

2.5

3.0
1

Re

2

3

c neut
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2, respectively. Result of Benjamin (1957) asymptotic approach is cneut ¼ 3 at all values of Re and Fi1=11.
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has a single unstable mode. Let us note that the number of Chebyshev polynomials M in the disturbances
approximation was varied in a wide range (from 10 up to 50). Dependences presented in Figs. 1 and 2 were
calculated at M = 25 (for all values of the Kapitsa and Reynolds numbers) and ones were not changed at fur-
ther increasing of M.

At relatively small values of Re the dependences in Figs. 1 and 2 correspond to results of asymptotic
approach (Benjamin, 1957; ðaneutÞB
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There is essential discrepancy between the predictions of the asymptotic or integral approaches and our
results at moderate and large values of Re. The discrepancy increases with the film number decreasing. Let
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Fig. 3. Corrugations parameters (below the corresponding line) where the steady-state solution is stable with respect to disturbances of the
same period (Q = 0): (a) corresponds to the Navier–Stokes equations (k�neut=H 0 is presented in Fig. 1); (b) integral model
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5, 10, 20 and 50, respectively; lines 11–15 – Fi1/11 = 2 at Re = 1, 5, 10, 20 and 50, respectively.
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velocity of the neutral disturbance is close to the free surface velocity at these values of Re. The last two con-
clusions are in agreement with the results of Chin et al. (1986) where they investigated linear stability of film
flow over a smooth surface at large values of Reynolds number (Re > 100).
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same period (Q = 0); solid lines corresponds to the Navier–Stokes equations; dashed lines – integral model. The lines parameters are
explained in caption of Fig. 3.
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5. Results of the calculations. Stability of the film flows down a corrugated surface

Calculations of the steady-state regimes start at small values of the corrugation amplitude where we have
initial guess (solution (8)) of the iteration procedure. Varying parameters the steady-state solutions were
obtained and their stability was analyzed at wide range of L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
and A=L at three values of Ka ¼ Fi1=11

and for the values of Re = 1, 5, 10, 20 and 50.
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to the Navier–Stokes equations; dashed lines – integral model. Value of Fi1/11 = 10: (a) corresponds to Re = 1; (b) Re = 5; (c) Re = 10.
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Results of the stability study are presented in Figs. 3a and 4–7. The corresponding results of the integral
approach obtained by Trifonov (2007) are shown in Figs. 3b and 4–6 as dashed lines. Figs. 8–11 demonstrate
basic characteristics of the solutions of the Navier–Stokes equations at the parameters variation. Here hHi is
the averaged local film thickness, Hmax and Hmin are the maximum and minimum of the local film thickness
over a period, respectively. The contour lines of the streamline function Wðx; gÞ ¼

R g
0

HðxÞubðx; g0Þdg0 are
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Fig. 6. Corrugations parameters where the steady-state solution is stable with respect to disturbances of the same period (below line 1) and
ones where the solution is stable with respect to arbitrary disturbances Q 2 ½0; 1� (inside region bounded by line 2). Solid lines corresponds
to the Navier–Stokes equations; dashed lines – integral model. Value of Fi1/11 = 5: (a) corresponds to Re = 1; (b) Re = 5; (c) Re = 20, no
region 2 in accordance with the integral approach.
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shown in Fig. 12. In steady flow, the streamlines represent particle trajectories within the liquid. The wall and
the free surface shapes are the low and upper bounds of the plot, respectively ðy=L ¼ e½f ðxÞ=e1 þ gH bðxÞ�Þ. In
Fig. 13, the corresponding streamline function of the integral approach and the free surface shape are pre-
sented for comparison.

There are real eigenvalues and pairs of the complex conjugate eigenvalues in spectrum of problem (15) at
Q = 0. On lines 1–15 in Figs. 3 and 4 (or on line 1 in Figs. 5 and 6) the real part of one pair of complex
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Fig. 7. Behaviour of the real parts of two eigenvalues as a function of parameter Q at different values of the corrugation period. The
steady-state solution is stable if Real(k) of all eigenvalues is positive at all values of Q 2 ½0; 0:5�. Values of Fi1/11 = 10, Re = 5, A/L = 0.1:
(a) corresponds to L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
¼ 3:7; (b) L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
¼ 2; (c) L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
¼ 1.
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conjugate values goes through zero. Below these lines the solutions are stable with respect to disturbances with
Q = 0. At these values of the corrugation and flow parameters the basic wavyless solution can be observed in
experiments (at least over an initial part of the experimental channel) while the unstable disturbances with
finite values of Q or the possible unstable three-dimensional disturbances will be developed. In experiments
of Vlachogiannis and Bontozoglou (2002), devoted to the film flow over inclined corrugated channel they
called this part of the flow as ‘‘free surface with static deformation’’. Above the lines 1–15 in Figs. 3 and 4
(or above line 1 in Figs. 5 and 6) the solutions are unstable with respect to disturbances with Q = 0 and
the wavyless basic solution cannot be observed experimentally even on the initial part of the flow channel.
Let us note that the value k�neut (period of the neutral disturbance of the film flow down a smooth surface) used
as a scale in Fig. 3a depends essentially on Re and Ka (see Fig. 1). Let us also note that the lines 1–15 in Fig. 3a
are close enough to unity at all values of the corrugation amplitude and ones are close to the corresponding
lines of the integral approach (Fig. 3b). Fig. 4 presents the same results using capillary constant as a scale of
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the corrugation period. Both the lines scattering and the difference from the integral approach are more essen-
tial in this system of non-dimensional parameters (due to essential dependence of k�neut on Re and Ka). Nev-
ertheless we will use L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
as a non-dimensional parameter for rest of the paper graphs due to more clear

connection with the liquid physical property.
There are three different regimes of the film flowing over a wavy wall as it follows from Figs. 8–13. First of

them is characterized by the free surface shape that follows the wall shape and one is realized at large values of
L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
. The value of ðHmax � H minÞ is relatively small for this type of flowing and hHi is close to one. Sec-

ond regime of flowing is characterized both by the deformed free surface shape and by the existence of the area
of ‘‘thick’’ film over the corrugation period resulting in an essential increasing of the value of ðHmax � H minÞ.
This type of flowing is realized at moderate values of L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
. Third type of flowing is realized at small val-

ues of L=
ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
and the film free surface is almost parallel to the x-axis for this regime. These three types of

flowing exist at all values of Re and Ka considered in the paper. Comparison with the stability analysis results
presented in Fig. 4 allows us to conclude that the first regime of flowing is unstable with respect to distur-
bances with Q = 0. Using a perturbation analysis the stability of the first type of flowing over the inclined
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corrugated wall was considered by Wierschem and Aksel (2003) and Wierschem et al. (2005). They found that
the critical Reynolds number for the onset of surface waves is higher than for a flat bottom but one is still zero
for the flow down a vertical corrugated wall. We are going to analyze stability of the film flow over inclined
wavy wall in nearest future based on the Navier–Stokes equations in their full statement. Now it is not possible
to give comparison of our results with these papers conclusions.

Above, the stability with respect to disturbances of the same period as the period of corrugations was ana-
lyzed. This class of disturbances is very important but there are other disturbances which can be unstable.
Time-evolution of any disturbance of our basic periodical regime can be presented through a set of two-peri-
odical perturbations ð bH ðxÞ; ûðx; gÞ; v̂ðx; gÞ; bP ðx; gÞÞ expð�ktÞ expð2piQxÞ in accordance with the Floquet’s the-
orem. One of the perturbations periods is the period of corrugations and the second period is L/Q. For every
value of Q 2 ½0; 1� we should analyze the spectrum of the eigenvalues of problem (15) to give answer regarding
the stability. There are harmonics of period L,L/2, . . .,2L/N in the Fourier expansion of
ð bH ðxÞ; ûðx; gÞ; v̂ðx; gÞ; bP ðx; gÞÞ and our stability analysis covers all types of disturbances with different wave-
lengths (equal, shorter and longer with respect to the wall period).
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Line 2 in Figs. 5 and 6 bounds the parameters region where the steady-state solutions are stable with respect
to arbitrary disturbances with Q 2 ½0; 1�. At finite values of Q 6¼ 1=2 the spectrum of problem (15) consists of
complex eigenvalues. At Q ¼ 1=2 the spectrum consists of real eigenvalues and pairs of the complex conjugate
eigenvalues. At Q > 1=2 the eigenvalues of problem (15) are complex conjugate to the corresponding eigen-
values at Q1 ¼ 1� Q. Thus, we have a lot of branches of kiðQÞ, i ¼ 1; . . . ; ð3M þ 1ÞðN � 1Þ. Most of them
are with a very large positive value of Real(k) for all values of Q 2�0; 0:5�. Fig. 7 demonstrates two branches
of Real(k) for three steady-state solutions (different periods of corrugation) at constant Ka, Re and A=L. In the
spectrum of problem (15) there is the disturbance that demonstrates the vanishing value of Real(k) with the Q

decreasing (branch 1 in Fig. 7). This branch can have positive or negative value of Real(k) at small Q (the
‘‘long-modulated’’ disturbances) and one controls the stability/unstability of steady-state solution at finite val-
ues of Q. Let us emphasize that the ‘‘long-modulated’’ mode has zero value of k at Q = 0 and the parameters
regions where all disturbances are stable can be very different from those of where the basic solution is stable
with respect to disturbances with Q = 0. For example, we did not find solutions which are stable with respect
to disturbances with Q 6¼ 0 for Re = 20 and 50 at Ka = 10, for Re = 50 at Ka = 5 and for Re = 1, 5, 10, 20 and
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50 at Ka = 2 inspite of the wide enough region of the parameters where the basic solution is stable with respect
to disturbances with Q = 0 (see Fig. 4). Let us also note that the integral approach gives good enough descrip-
tion of the stability regions with respect to arbitrary disturbances at Ka = 10.

Before the conclusions let us give some additional comments regarding Figs. 12 and 13. In accordance with
the Navier–Stokes calculations there is stagnation zone at moderate values of the Reynolds number at some
values of the corrugation parameters (it is not possible to have such zones in frame of the integral approach
due to suggestion oP=oy ¼ 0 used by the approach). The stagnation zone can exist even for the first type of
flowing when the film free surface follows the corrugations shape (see Fig. 12). Negny et al. (2001a,b) observed
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such type of flowing with vortex both experimentally and numerically considering the film flow over a wavy
wall in cylindrical geometry ðA=L � 0:36;Ka � 10; L=

ffiffiffiffiffiffiffiffiffiffiffi
r=qg

p
� 8Þ. Stagnation zone in their calculations was

found starting from small values of Re � 4. There is no vortex at such small values of Re in our case for these
values of the corrugation parameters. There are two finite curvatures of the film free surface in their calcula-
tions. First of them is connected with the wavy wall. Second curvature is connected with the cylindrical geom-
etry and one varies over the corrugation period. This variation is comparable with the first curvature changes
and it gives new force that is not included in our equations. It will be interesting work to extend our analysis
for the cylindrical geometry.
6. Conclusions

Theoretical analysis of linear stability of the viscous liquid film flowing down a wavy surface is carried out.
The study is based on the Navier–Stokes equations in their full statement. The developed numerical algorithm
allows us to obtain pioneer results in the stability of the film flow down a corrugated surface without asymp-
totic approximations in a wide range over Reynolds and Kapitsa’s numbers. Results presented in the paper
allow the following conclusions to be drawn:

• There exist corrugation parameters at which the steady-state solution is unstable with respect to perturba-
tions of the same period as the period of corrugation. In this case the waveless solution cannot be observed
in reality and the wall corrugation demonstrates a destabilizing effect. It is obtained that the bound of such
instability is close to line L=k�neut ¼ 1 for all values of the corrugations amplitude considered in the paper (L
is the corrugation period, k�neut is the length of neutral disturbance for the film flow down a smooth surface).
Below this line L < k�neut


 �
the steady-state solution is stable with respect to perturbations of the same

period.
• At the same time, there is a region of the corrugation parameters (amplitude and period) where all pertur-

bations decay in time at moderate values of Reynolds number. In this case the wall corrugation demon-
strates a stabilizing effect. At larger values of the Reynolds number there are the ‘‘long-modulated’’
disturbances growing in time. As a result the more complicated regimes of flowing down a corrugated sur-
face can be formed. In frame of the integral approach such regimes were studied by Trifonov (2007). It will
be interesting problem in future to consider the wavy regimes of flowing down a corrugated surface by use
of the Navier–Stokes equations.

• It is shown that the well-known results of the stability analysis of the film flow down a smooth surface
obtained by use of both asymptotic and integral approaches are not valid almost for all Reynolds numbers
at small values of the Kapitsa’s number and ones are not valid starting from moderate Reynolds numbers
at large values of the Kapitsa’s number. It is obtained that the wavelength of neutral disturbances becomes
be not dependent on the liquid flow rate at large values of Reynolds number.

• It is shown that in the region of the corrugation parameters (period and amplitude) considered in the paper
there are two types of flowing down a wavy surface – (a) film free surface follows the wall shape or (b) the
film flow demonstrates an area of ‘‘thick’’ film over the corrugation period resulting in an essential increas-
ing of both the averaged film thickness and the difference between the film thickness maximum and mini-
mum. The second type of flowing can be splitted additionally into the flowing with the deformed free
surface and with the free surface that is almost parallel to the x-axis. The corrugation parameters of the
second regime of flowing are inside the stability zone.

• There is the practically important region of the corrugation and flow parameters (A=L 6 0:2, the Nusselt’s
film thickness is comparable with the corrugations amplitude) where the integral approach gives results
which are in good agreement with the corresponding results obtained by use of the Navier–Stokes equa-
tions in their full statement.
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